Paternal loss (pal): a meiotic mutant in Drosophila melanogaster causing loss of paternal chromosomes.

نویسنده

  • B S Baker
چکیده

The effects of a male-specific meiotic mutant, paternal los (pal), in D. melanogaster have been examined genetically. The results indicate the following: (1) When homozygous in males, pal can cause loss, but not nondisjunction, of any chromosome pair. The pal-induced chromosome loss produces exceptional progeny that apparently failed to receive one, or more, paternal chromosomes and, in addition, mosaic progeny during whose early mitotic divisions one or more paternal chromosomes were lost. (2) Only paternally derived chromosomes are lost. (3) Mitotic chromosome loss can occur in homozygous pal+progeny of pal males. (4) Chromosomes differ in their susceptibility to pal-induced loss. The site responsible for the insensitivity vs. sensitivity of the X chromosome to pal mapped to the basal region of the X chromosome at, or near, the centromere. From these results, it is suggested that pal+acts in male gonia to specify a product that is a component of, or interacts with, the centromeric region of chromosomes and is necessary for the normal segregation of paternal chromosomes. In the presence of pal, defective chromosomes are produced and these chromosomes tend to get lost during the early cleavage divisions of the zygote. (5) The loss of heterologous chromosome pairs is not independent; there are more cases of simultaneous loss of two chromosomes than expected from independence. Moreover, an examination of cases of simultaneous somatic loss of two heterologs reveals an asymmetry in the early mitotic divisions of the zygote such that when two heterologs are lost at a somatic cleavage division, almost invariably one daughter nucleus fails to get either, and the other daughter nucleus receives its normal chromosome complement. It is suggested that this asymmetry is not a property of pal but is rather a normal process that is being revealed by the mutant. (6) The somatic loss of chromosomes in the progeny of pal males allows the construction of fate maps of the blastoderm. Similar fate maps are obtained using data from gynandromorphs and from marked Y chromosome (nonsexually dimorphic) mosaics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Horka, a dominant mutation of Drosophila, induces nondisjunction and, through paternal effect, chromosome loss and genetic mosaics.

Fs(3)Horka (Horka) was described as a dominant female-sterile mutation of Drosophila melanogaster. Genetic and cytological data show that Horka induces mostly equational nondisjunction during spermatogenesis but not chromosome loss and possesses a dominant paternal effect: the X, second, third and the fourth chromosomes, but not the Y, are rendered unstable while undergoing spermatogenesis and ...

متن کامل

Toward a comprehensive genetic analysis of male fertility in Drosophila melanogaster.

Drosophila melanogaster is a widely used model organism for genetic dissection of developmental processes. To exploit its full potential for studying the genetic basis of male fertility, we performed a large-scale screen for male-sterile (ms) mutations. From a collection of 12,326 strains carrying ethyl-methanesulfonate-treated, homozygous viable second or third chromosomes, 2216 ms lines were ...

متن کامل

A translocation X;Y system for detecting meiotic nondisjunction and chromosome breakage in males of Drosophila melanogaster.

A nondisjunction and chromosome breakage screening system devised by Craymer and modified in our laboratory, involves an X;Y translocation with the short arm of the Y (Ys), marked with the wild type allele of yellow, attached to the distal end of an X (break point 11D) carrying the recessive marker y; and the long arm of the Y chromosome (YL), marked with the dominant locus Bar of Stone (BS), a...

متن کامل

DNMT3L Is a Regulator of X Chromosome Compaction and Post-Meiotic Gene Transcription

Previous studies on the epigenetic regulator DNA methyltransferase 3-Like (DNMT3L), have demonstrated it is an essential regulator of paternal imprinting and early male meiosis. Dnmt3L is also a paternal effect gene, i.e., wild type offspring of heterozygous mutant sires display abnormal phenotypes suggesting the inheritance of aberrant epigenetic marks on the paternal chromosomes. In order to ...

متن کامل

Genetic characterization of ms (3) K81, a paternal effect gene of Drosophila melanogaster.

The vast majority of known male sterile mutants of Drosophila melanogaster fail to produce mature sperm or mate properly. The ms(3) K81(1) mutation is one of a rare class of male sterile mutations in which sterility is caused by developmental arrest after sperm entry into the egg. Previous studies showed that males homozygous for the K81(1) mutation produce progeny that arrest at either of two ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 80 2  شماره 

صفحات  -

تاریخ انتشار 1975